Research Article | Open Access
Volume 2022 |Article ID 9841985 | https://doi.org/10.34133/2022/9841985

Wheat Ear Segmentation Based on a Multisensor System and Superpixel Classification

Alexis CarlieriD ,1 Sébastien DandrifosseiD ,1 Benjamin DumontiD ,2 and Benoît Mercatoris iD 1

1Biosystems Dynamics and Exchanges, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
2Plant Sciences, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium

Received 
20 Sep 2021
Accepted 
24 Dec 2021
Published
28 Jan 2022

Abstract

The automatic segmentation of ears in wheat canopy images is an important step to measure ear density or extract relevant plant traits separately for the different organs. Recent deep learning algorithms appear as promising tools to accurately detect ears in a wide diversity of conditions. However, they remain complicated to implement and necessitate a huge training database. This paper is aimed at proposing an easy and quick to train and robust alternative to segment wheat ears from heading to maturity growth stage. The tested method was based on superpixel classification exploiting features from RGB and multispectral cameras. Three classifiers were trained with wheat images acquired from heading to maturity on two cultivars at different levels of fertilizer. The best classifier, the support vector machine (SVM), yielded satisfactory segmentation and reached 94% accuracy. However, the segmentation at the pixel level could not be assessed only by the superpixel classification accuracy. For this reason, a second assessment method was proposed to consider the entire process. A simple graphical tool was developed to annotate pixels. The strategy was to annotate a few pixels per image to be able to quickly annotate the entire image set, and thus account for very diverse conditions. Results showed a lesser segmentation score (F1-score) for the heading and flowering stages and for the zero nitrogen input object. The methodology appeared appropriate for further work on the growth dynamics of the different wheat organs and in the frame of other segmentation challenges.

© 2019-2023   Plant Phenomics. All rights Reserved.  ISSN 2643-6515.

Back to top